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ABSTRACT: It is generally agreed that models that better simulate historical and current features of climate should also be
the ones that more reliably simulate future climate. This article describes the ability of a selection of global climate models
(GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) to represent the historical and current mean climate
and its variability over northeastern Argentina, a region that exhibits frequent extreme events. Two types of simulations are
considered: Long-term simulations for 1901–2005 in which the models respond to climate forcing (e.g. changes in atmospheric
composition and land use) and decadal simulations for 1961–2010 that are initialized from observed climate states. Monthly
simulations of precipitation and temperature are statistically evaluated for individual models and their ensembles.

Subsets of models that best represent the region’s climate are further examined. First, models that have a Nash–Sutcliffe
efficiency of at least 0.8 are taken as a subset that best represents the observed temperature fields and the mean annual cycle.
Their temperature time series are in phase with observations (r > 0.92), despite systematic errors that if desired can be corrected
by statistical methods. Likewise, models that have a precipitation Pearson correlation coefficient of at least 0.6 are considered
that best represent regional precipitation features. GCMs are able to reproduce the annual precipitation cycle, although they
underestimate precipitation amounts during the austral warm season (September through April) and slightly overestimate the
cold season rainfall amounts. The ensembles for the subsets of models achieve the best evaluation metrics, exceeding the
performance of the overall ensembles as well as those of the individual models.
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1. Introduction

Southeastern South America presents large departures
from the mean climate at different time scales leading to
frequent extreme events, including floods, droughts, and
heat waves that affect natural and human systems (Magrin
et al., 2014). Several observational studies have found
that extreme events have increased in their frequency and
severity. This trend may become more pronounced in the
coming decades as discussed by Seneviratne et al. (2012),
Cavalcanti et al. (2015) and Carril et al. (2016). If so,
these changes are likely to disrupt hydrological systems
affecting food production in one of the most fertile plains
in the world. Research on regional climate variability
and change then becomes a necessity in order to transfer
scientific knowledge to decision-making processes.

Projections of future climate are produced with numer-
ical simulations based on global climate models (GCMs),
whose reliability depends on their ability to reproduce
historical and current features of climate. To this end, the
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World Climate Research Programme’s Working Group on
Coupled Modelling promoted a set of experiments known
as the fifth phase of the Coupled Model Intercomparison
Project (CMIP5; Taylor et al., 2012a), following a pre-
vious version known as CMIP3 (Meehl et al., 2007). In
general, models have less skill to simulate precipitation
than they do for temperature because the temperature is
obtained from a thermodynamical balance, while precip-
itation results from simplified parameterizations approxi-
mating actual processes (Flato et al., 2013; see also ref-
erences therein). These authors showed that the CMIP5
models reproduce global scale patterns of surface temper-
ature and that at regional scales, the CMIP5 simulations of
temperature and large-scale precipitation have improved
over those of CMIP3.

Studies focused on southeastern South America have
reported that CMIP5 models properly simulate regional
mean temperature (Flato et al., 2013; Kumar et al., 2014).
de Barros Soares et al. (2017) have shown that most
CMIP5 models capture the positive trends in temperature.
CMIP5 models simulate precipitation with lower relative
errors and smaller inter-model dispersion than CMIP3
in annual and summer precipitation patterns (Gulizia
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Figure 1. Topography map of the southern portion of South America together with the main rivers that drain into the La Plata River. The red box
highlights the study region in northeastern Argentina.

and Camilloni, 2015; Díaz and Vera, 2017). Yet in the
eastern portion of southeastern South America, a CMIP5
multi-model ensemble underestimates the annual cycle
of precipitation as well as drought events (Penalba and
Rivera, 2013, 2016). Consistent with these findings,
Maenza et al. (2017) found that while 15 CMIP5 models
and their ensemble capture the low-frequency variations
of wet season precipitation, they underestimate precip-
itation values over the western Pampas of Argentina.
Trends in precipitation for the period 1902–2005 have
been discussed by Vera and Díaz (2015) who reported
that an ensemble of CMIP5 models identified the positive
change of precipitation, but with a weaker magnitude
than that in observations. Furthermore, ensembles of
regional climate models coordinated under the project
CLARIS-LPB (see Solman et al., 2013; Sánchez et al.,
2015; Boulanger et al., 2016 and references therein)
show that the spatial and temporal patterns provide
more detail although they still reflect the biases of the
driving GCMs.

Many studies that evaluate the performance of CMIP5
models have focused on long-term simulations. However,
previous observational studies in southeastern South
America have shown that decadal variability plays a key
role in the region’s climate (Baethgen and Goddard, 2013;
Grimm and Saboia, 2015). The CMIP5 decadal simula-
tions are expected to reproduce the decadal variability
since the simulations do not only respond to external
forcing but also consider internal interactions within the
climate system (Taylor et al., 2012a). Thus, decadal sim-
ulations potentially track the actual trajectory of climate
change and explore climate predictability on decadal to
multi-decadal time scales.

Argentina is a leading cereal and meat exporter, con-
sidered one of the breadbaskets of the world that plays a
strategic role in the global food security (Fischer et al.,
2014). This study will focus on an extensive portion of
the Pampas in northeastern Argentina, that presents three
remarkable features: (1) it produces more than 80% of
the agricultural yield (mostly soybeans, maize, sunflower,
and wheat) and cattle raising of the country (Agrofy
News, 2017; Ministry of Agroindustry, 2017); (2) it expe-
riences hydro-climate variability on different time scales
(i.e. interannual and decadal) and experiences extreme
events that may increase in frequency and severity in the
coming years and (3) it concentrates more than 90% of
Argentina’s population, which together with the conse-
quent concentration of economic activities make it particu-
larly vulnerable to hydro-climate variability and extremes.
The study region is mostly flat with almost no slopes and is
delimited by 65–58∘W and 36–26∘S (see Figure 1). The
region is relatively homogeneous from a climatic perspec-
tive, identified as a subtropical humid climate according to
the Köppen−Trewartha climate classification (Jacob et al.,
2012; Gallardo et al., 2016). The regional precipitation is
mostly uniformly distributed throughout the year and the
thermal gradient is latitudinal (Berbery and Barros, 2002;
Caffera and Berbery, 2006).

The main objective of this article is to evaluate the abil-
ity of CMIP5 models to represent the historical and present
climate over northeastern Argentina. In doing so, measures
of statistical and spatio-temporal properties of historical
long-term and decadal simulations are assessed and sub-
sets of the best performing models are identified. Section
2 describes the CMIP5 and its models, the used data sets
and the methodology of evaluation. Sections 3 and 4 assess
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to what extent the GCMs reproduce the observed precipita-
tion and temperature in long-term and decadal simulations.
Finally, Section 5 presents the conclusions.

2. Data and methodology

2.1. CMIP5 models

CMIP5 provides an unprecedented collection of data sets
produced with climate models. The CMIP5 experiments
were performed in two groups: (1) long-term simula-
tions with century time scales and (2) near-term simula-
tions (also known as decadal simulations) with decadal
time scales of about 10–30 years (Taylor et al., 2012a).
Long-term experiments simulate the response to climate
forcing like the atmospheric composition (including CO2)
due to volcanic and anthropogenic influence, solar radi-
ation, emissions or concentrations of short life species,
natural and anthropogenic aerosols, and land use. The
decadal experiments not only respond to climate forcing
as the long-term experiments do but also they are initial-
ized from observed states of the climate system. Thus,
the decadal variability can enhance or moderate anthro-
pogenic trends of climate change at regional scales mainly
in short-term periods (Baethgen and Goddard, 2013). In
this way, decadal simulations potentially track the actual
trajectory of climate change (Taylor et al., 2012a).

This paper evaluates a set of 27 GCMs of the CMIP5
from different modelling centres. Model types include
ocean–atmosphere coupled models (AOGCMs), earth
system models (ESM), and models with chemical atmo-
spheric processes (ChemAO and ChemESM). Table 1
presents the 27 selected GCMs and their features: respon-
sible institution, model type, horizontal and vertical
resolution together with a main citation. Of the 27 GCMs,
we evaluate 25 with historical long-term simulations and
7 with decadal simulations. Two GCMs (CanCM4 and
CFSv2-2011) only perform decadal simulations and were
included to strengthen the multi-model ensembles of
decadal simulations. Following the coding established by
the WCRP working group on coupled modelling, we use
the simulations identified as r1i1p1, where r is the first
realization number, i is initialization method indicator, and
p the perturbed physics number. More details are found in
Taylor et al. (2012b).

2.2. CMIP5 data and observations

The models evaluation is performed on monthly precip-
itation (pr) and monthly air surface temperature (tas)
derived from historical long-term and decadal simulations.
The long-term simulations extend from 1850 to 2005,
i.e. from the beginning of the industrial revolution to the
near present. The period 1901–2005 is evaluated since
the observations are available from the beginning of the
20th Century. The 30-year hindcasts of decadal simula-
tions start in 1961. We evaluate the 1961–2010 period by
coupling the time series of the 30-year hindcasts initial-
ized in 1961 and 1981. A common-time period 1971–2000
is selected to study climatological features (annual cycles

and spatial distribution of annual means) of the present
climate for both long-term and decadal simulations. This
period is chosen as it is the last normal (30-year) period
available on both simulations.

The observational data set of temperature and precipita-
tion used in this study is the CRU TS 3.20 from the Climate
Research Unit – University of East Anglia (Harris et al.,
2014). CRU TS 3.20 consists of monthly gridded data
with a 0.5∘ × 0.5∘ spacing extending from January 1901
to December 2011. Other gridded data sets are available,
such as the Global Precipitation Climatology Centre data
set (GPCC, Schneider et al., 2011) and the University
of Delaware Air Temperature and Precipitation database
(UDEL; Matsuura and Willmott, 2009). All gridded prod-
ucts for southeastern South America face the problem of
sparse gauge coverage at the beginning of the 20th century
(e.g. Barreiro et al., 2014). According to Lovino (2015),
CRU TS 3.20 fits well observed monthly mean precipita-
tion and temperature over the study region, although the
most significant biases occur in the first decades of the
20th century.

2.3. Evaluation methodology

The models performance is assessed, first, contrasting
mean annual cycles and spatial patterns against observa-
tions. Second, the GCMs’ skill to simulate precipitation
and temperature is evaluated with statistical metrics.
The metrics used are the mean bias error (MBE), the
mean absolute error (MAE), the root mean square error
(RMSE), the centred root mean square error (CRMS),
the Nash–Sutcliffe efficiency (NSE) and the Pearson
correlation coefficient (r). A description of these metrics
can be found in Déqué (2012). The NSE is presented in
Nash and Sutcliffe (1970) and further discussed in Moriasi
et al. (2007).

MBE indicates whether a GCM simulation overesti-
mates or underestimates the observed data. MAE and
RMSE represent the magnitude of the error. NSE varies
between –∞ and 1, 1 being the perfect score. Moriasi
et al. (2007) suggested that model performance can be
evaluated as ‘satisfactory’ if NSE> 0.5 and ‘very good’
if NSE> 0.75.

For the spatial evaluation, we compute the MBE, the
RMSE and the spatial correlation between the mean annual
fields of simulated and observed variables. To compute the
spatial metrics, simulated data are scaled to a 1∘ longi-
tude× 1∘ latitude grid through the inverse distance weight-
ing (IDW; Shepard, 1968). The CRU data set is also used
at 1∘ grid spacing. We choose 1∘ grid spacing as an inter-
mediate resolution among the different resolutions of the
GCMs and the observed data set (see Table 1).

The results are shown for the individual models and
multi-model ensemble means. For long-term simula-
tions, we compute the multi-model ensemble means
for the 25 studied GCMs and for subsets of models
selected according to the best performance to simulate
the regional climate. For decadal simulations, we perform
the multi-model ensemble means for the seven GCMs
examined here.
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Table 1. CMIP5 models studied and their attributes.

Model Institution, country Type Atmospheric resolution
(∘lon.× ∘lat.)

Model levels (L)

Reference

1 ACCESS 1.0 CSIRO-BOM, Australia AOGCM 1.875× 1.25 L38 Bi et al. (2013)
2 BCC-CSM1.1 BCC-CMA, China ESM 2.81× 2.81 L26 Xin et al. (2013)
3 BNU-ESM CGCESS-BNU, China AOGCM 2.81× 2.81 L26 Ji et al. (2014)
4 CanESM2 CCCMA, Canada ESM 2.81× 2.81 L35 Arora et al. (2011)
5 CESM1-BGC NSF-DOE-NCAR, USA AOGCM 1.25× 0.9424 L26 Long et al. (2013)
6 CESM1-FASTCHEM NSF-DOE-NCAR, USA ChemESM 1.25× 0.9424 L26 Lamarque (2013)
7 CNRM-CM5.2 CNRM-CERFACS, France AOGCM 1.41× 1.41 L31 Voldoire et al. (2013)
8 CSIRO-Mk3.6.0 CSIRO-QCCCE, Australia AOGCM 1.875× 1.875 L18 Rotstayn et al. (2010)
9 GFDL-CM3 NOAA GFDL, USA AOGCM 2.5× 2 L48 Donner et al. (2011)
10 GFDL-ESM2M NOAA GFDL, USA ESM 2.5× 2 L24 Dunne et al. (2012)
11 GISS-E2-R NASA GISS, USA ChemAO 2.5× 2 L40 Miller et al. (2014)
12 HadGEM2-CC MOHC, UK ESM 1.875× 1.25 L60 Collins et al. (2011)
13 HadGEM2-ES MOHC, UK ChemESM 1.875× 1.25 L60 Collins et al. (2011)
14 INM-CM4 INM, Russia AOGCM 2× 1.5 L21 Volodin et al. (2010)
15 MIROC5 MIROC, Japan AOGCM 1.41× 1.41 L40 Watanabe et al. (2010)
16 MIROC-ESM-CHEM MIROC, Japan ChemESM 2.81× 2.81 L80 Watanabe et al. (2010)
17 MPI-ESM-LR MPI-M, Germany ESM 1.875× 1.875 L47 Zanchettin et al. (2013)
18 MPI-ESM-MR MPI-M, Germany ESM 1.875× 1.875 L95 Zanchettin et al. (2013)
19 MRI-CGCM3 MRI, Japan AOGCM 1.125× 1.125 L48 Yukimoto et al. (2012)
20 NorESM1-M NCC, Norway ESM 2.5× 1.875 L26 Bentsen et al. (2012)
21 CCSM4a NCAR,USA AOGCM 1.25× 0.94 L26 Gent et al. (2011)
22 CMCC-CMa CMCC, Italy AOGCM 0.75× 0.75 L31 Scoccimarro et al. (2011)
23 EC-EARTHa EC-Earth Consortium AOGCM 1.125× 1.125 L62 Hazeleger et al. (2010)
24 FGOALS-g2a LASG-CESS, China AOGCM 2.81× 2.81 Li et al. (2013)
25 MIROC4ha MIROC, Japan AOGCM 0.56× 0.56 L56 Sakamoto et al. (2012)
26 CanCM4b CCCMA, Canada AOGCM 2.81× 2.81 L35 Merryfield et al. (2013)
27 CFSc2-2011b COLA and NCEP, USA ESM 1× 1 L64 Saha et al. (2010)

aModels evaluated with both decadal and historical long-term simulations. bModels only evaluated with decadal simulations.

3. Historical long-term simulations

3.1. Temporal analysis of temperature

The evaluation metrics for the CMIP5 models that per-
formed historical long-term simulations (Table 2) indi-
cate that the regional mean temperature is noticeably
well simulated. All models have correlations above 0.92
and low errors (the averages of the individual mod-
els’ errors are MAE= 2.3 ∘C and RMSE= 2.7 ∘C). The
error values are in the range of those reported by Flato
et al. (2013) for southeastern South America. GCMs that
achieve the best performances were chosen for further
analysis. The selection criterion was that they must sat-
isfy a minimum NSE of 0.8. The selected threshold is
in the range of ‘very good values’ as recommended by
Moriasi et al. (2007) for general performance ratings. Nine
models, shaded in Table 2, meet the requirement. The
selected models have high correlations with observations
and very low statistical errors (1.40 ∘C<MAE< 1.72 ∘C
and 1.78 ∘C<RMSE<2.10 ∘C). The 9-model ensemble
achieved the best evaluation metrics, exceeding those
of the individual members. Of the individual models,
CESM1-BGC and CCSM4 models (rows 5 and 21) show
the best skill scores, with an efficiency of 0.86, the lower
errors, and correlations of 0.94.

Figure 2 presents the time series of areal-averaged
annual and spring mean temperature for the ensemble
of the 25 models and the ensemble of the subset of 9

models with the better performance. In both time series,
the 25-model ensemble presents a systematic error, which
is significantly reduced with the 9-model ensemble. These
results are consistent with the reduction of the MBE
from 0.68 to 0.02 ∘C (Table 2). Figure 2(a) shows that
the ensembles depict lower variability than observations,
but still reproduce the trend in regional annual mean
temperature in the latter part of the period. This warming
trend is captured by all the selected models, although with
different magnitudes (not shown). It has been reported that
northeastern Argentina registered the most significant pos-
itive trends in spring mean temperature (Lovino, 2015).
Figure 2(b) shows that the 9-model ensemble correctly
recognizes this trend. Similar results were reported by
de Barros Soares et al. (2017) who showed that most
CMIP5 historical simulations reproduce the observed
annual and spring temperature trends in southeastern
South America.

Scatterplots of the simulated and observed tempera-
ture of the two multi-model ensembles are presented in
Figure 3. For reference, similar pictures are shown for the
two single models that exhibit the best evaluation metrics,
the CCSM4 and CESM1-BGC. Figures 3(a) and (b) show
that the ensembles achieve a low dispersion around the lin-
ear regression line (R2 = 0.93). The dispersion of the data
is slightly higher in cold months than in warm months.
The regression line in Figure 3(a) shows that the 25-model
ensemble overestimates temperature on warm months.
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Table 2. Statistical evaluation metrics between the areal-averaged time series of mean temperature observed and simulated by
historical long-term simulations (1901–2005). The shaded rows correspond to the models that achieve the best evaluation metrics,

performing the 9-model ensemble mean.

Model MBE
(∘C/month)

MAE
(∘C/month)

RMSE
(∘C/month)

NSE Correlation
coefficient

1 ACCESS 1.0 0.87 1.70 2.10 0.81 0.94
2 BCC-CSM1.1 −1.40 2.01 2.51 0.71 0.94
3 BNU-ESM 0.25 2.46 2.97 0.61 0.94
4 CanESM2 −1.25 1.80 2.31 0.77 0.94
5 CESM1-BGC 0.31 1.41 1.78 0.86 0.94
6 CESM1-FASTCHEM 0.06 1.44 1.85 0.85 0.94
7 CNRM-CM5.2 0.47 1.74 2.18 0.79 0.93
8 CSIRO-Mk3.6.0 1.64 2.59 3.08 0.58 0.94
9 GFDL-CM3 1.54 2.30 2.82 0.65 0.93
10 GFDL-ESM2M 3.27 3.49 4.06 0.27 0.92
11 GISS-E2-R 3.49 3.76 4.42 0.14 0.93
12 HadGEM2-CC −0.01 1.69 2.09 0.81 0.94
13 HadGEM2-ES 0.22 1.78 2.21 0.79 0.94
14 INM-CM4 −3.81 3.90 4.67 0.04 0.94
15 MIROC5 4.05 4.08 4.45 0.13 0.94
16 MIROC-ESM-CHEM 1.06 1.72 2.10 0.81 0.94
17 MPI-ESM-LR 1.74 2.23 2.73 0.67 0.93
18 MPI-ESM-MR 2.03 2.48 3.08 0.58 0.92
19 MRI-CGCM3 1.70 2.21 2.67 0.69 0.93
20 NorESM1-M 0.23 1.41 1.79 0.86 0.93
21 CCSM4 0.12 1.40 1.81 0.86 0.94
22 CMCC-CM −0.26 1.50 1.91 0.84 0.93
23 EC-EARTH 0.21 1.57 2.00 0.82 0.92
24 FGOALS-g2 −3.12 3.16 3.57 0.44 0.94
25 MIROC4h 2.84 3.11 3.58 0.44 0.94

25-model ensemble 0.68 1.40 1.70 0.87 0.94
9-model ensemble 0.02 1.08 1.39 0.92 0.96

In the 9-model ensemble (Figure 3(b)), the regression
line fits the 1 : 1 line better than the 25-model ensemble
reaching a slope value m= 1.03. Although the ensem-
bles fit well the data, their variability is reduced given
that the ensembles diminish the dispersion of simulated
temperatures keeping their monthly values in a narrow
band when compared with observations. It produces a
month-to-month discontinuity in the scatterplots mainly
on transitions months between cold and warm seasons
(for instance, see green dots representing April and Octo-
ber temperatures). The 9-model ensemble improves the
representation of the monthly observed variability and
reduces the discontinuity displayed by the scatterplot of
the 25-model ensemble. Regarding the best-performance
individual models, Figures 3(c) and (d) show that the
two models are close to the 1 : 1 line with observations,
with a very good dispersion given by the determination
coefficient R2 ∼ 0.88. As the multi-model ensembles, the
reference models fit better mean temperatures than cold or
hot extremes.

Figure 4 depicts the Taylor diagram of the regional mean
temperature. Taylor diagrams summarize the degree of
correspondence between the observed and simulated fields
in terms of their correlation, their CMRS and the ratio
of their variances (Taylor, 2001). The reference point
‘a’ in Figure 4 shows that observations have a standard

deviation of 4.8 ∘C. The diagram shows graphically that
the 9-model ensemble mean (point 2) presents the best
scores and correctly represent the reference standard devi-
ation. The 25-model ensemble mean (point 1) exhibits sim-
ilar performance than the individual models with better
skill scores. All analysed GCMs are in phase with obser-
vations, with correlation coefficients varying in the range
0.92–0.94. Also, most of the models form a cluster of
points as they exhibit standard deviations between 5 and
7 ∘C and CRMS close to 2 ∘C. On this cluster, CCSM4
and CESM1-BGC (blue points) stand out as the closer
models to the reference point. In general terms, the eval-
uation metrics computed in northeastern Argentina dis-
played by the Taylor diagrams are consistent with those
found in most regions of the world (see Kumar et al.,
2014), with slightly lower skills than in North America or
southeastern Asia.

So far we have seen that models tend to reproduce statis-
tical features of the observations. Next, we explore basic
aspects of the observed and simulated climatology, includ-
ing the mean annual cycle and spatial patterns. Figure 5(a)
shows that the 25-model ensemble mean correctly fits the
annual cycle, slightly overestimating temperature from
November to April, in agreement with Flato et al. (2013)
for all southern South America. The inter-model range
has an average amplitude of 8 ∘C increasing to 10 ∘C on
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Figure 2. Areal-averaged time series of mean annual and spring temperature (in ∘C) observed and simulated by the multi-model ensembles of the
historical long-term simulations.

Figure 3. Scatterplots of simulated versus observed areal-averaged monthly mean temperature (period 1901–2005) of the multi-model ensembles
(a, b) and models with the best evaluation metrics (CCSM4 in c; CESM1-BGC in d). The linear regression line is plotted and its slope m is presented

together with the determination coefficient R2 in the bottom-right corner of each scatterplot.

austral winter (June to September). Figure 5(c) indicates
that the inter-model range of the nine selected GCMs
is remarkably reduced to almost 2–3 ∘C. The 9-model
ensemble mean improves the representation of the annual
cycle with respect to the 25-model ensemble, mainly
on warm months. Also, note that all the GCMs identify
the observed annual cycle (Figures 5(b) and (d)) with
different systematic errors that are quantified in Table 2 by

the MBE scores. Table 2 shows that 19 of the 25 models
have positive MBEs, indicating their tendency to overes-
timate the average regional temperature. As Figure 5(b)
shows, most of these models mainly overestimate the
temperature in warm months. Figure 5(d) shows that most
of the selected models reduce this error, accurately fitting
observed mean values between March and December and
only overestimate them in January and February. These
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Figure 4. Taylor diagram of the mean temperature simulated by historical long-term simulations (period 1901–2005). Only the GCMs slightly distant
from the central cluster of points are identified with letters.

results suggest that the nine models that achieve the best
evaluation metrics and its multi-model-mean ensemble
are able to properly simulate the mean annual cycle of
regional temperature.

3.2. Spatial analysis of temperature

The mean observed and simulated temperature fields are
presented in Figure 6. Observations (Figure 6(a)) reveal
a mostly south–north gradient with a temperature range
of about 6 ∘C. The 9-model ensemble mean (Figure 6(b))
exhibits a smoothed gradient resulting from a bias of
about −2 ∘C towards the south and a bias of about +1 ∘C
towards the north. Two of the models in the ensemble
are shown in Figures 6(c) and (d). They are CCSM4 and
CESM1-BGC, which were already shown to have the best
temporal performance. The two models are able to sim-
ulate the observed field with only a slight overestimation
towards the north.

The spatial evaluation metrics of the mean annual tem-
perature fields for the nine GCMs and their ensemble are
presented in Table 3. Spatial correlations vary between
0.62 and 0.96, with six models reaching values above
0.9. In general, the GCMs with higher horizontal resolu-
tion obtain the best skill scores. For example, the CCSM4
and CESM1-BGC models exhibit spatial correlations of
about r = 0.96, with a slightly warm MBE between 0.2
and 0.4 ∘C, consistent with the overestimation of the spatial
fields discussed above. In this case, the 9-model ensemble
mean achieves similar spatial scores than the two models
with the best performance. These results suggest that the
9-model ensemble does not improve the ability of the best
performance individual models to reproduce the annual
average temperature field.

3.3. Temporal analysis of precipitation

Metrics for the areal-averaged precipitation evaluation
are presented in Table 4. The values are lower than those
for temperature (for reference see Flato et al., 2013).
The correlation coefficients range from 0.31 to 0.64. The

RMSE and MAE metrics tend to be rather uniform among
models, with RMSE varying between 42 and 53 mm and
MAE between 32 and 42 mm. These errors are high but
similar to those found in southeastern South America
(Gulizia and Camilloni, 2015) and in other regions of the
world (Kumar et al., 2014). For instance, the RMSE values
are lower than in Africa but greater than in North America
(see also Sheffield et al., 2013). The MBE metric suggests
that most GCMs (18 out of 25) tend to underestimate
precipitation, consistently with the results reported by
Díaz and Vera (2017) for the La Plata Basin and Maenza
et al. (2017) for the western Pampas of Argentina (south
of the study region).

Statistical errors of precipitation are high, resulting in
low Nash–Sutcliffe efficiencies. The correlation coeffi-
cient is more useful as a measure of the phase between
time series, and the errors can be corrected using sta-
tistical methods (e.g. downscaling). Seven models with
correlations higher than 0.6 are chosen for further analysis
(see shaded rows in Table 4). Their statistical scores are
remarkably better than for the rest of the models. This
improvement is also reflected on the 7-model ensemble,
which has a temporal correlation above 0.7, while the
mean errors are reduced and the efficiency increases
considerably.

The annual and summer precipitation time series of the
25-model ensemble and the 7-model ensemble along with
observations are presented in Figure 7. The figure shows
that the multi-model ensembles have lower temporal
variability than observed precipitation. In the case of
annual precipitation (Figure 7(a)), the 25-model ensemble
underestimates the observed precipitation by 12% on
average. The 7-model ensemble reduces the underesti-
mation to just 1%. In the case of summer precipitation
(Figure 7(b)), the 25-model ensemble underestimates
the observed precipitation by 7% whereas the 7-model
ensemble overestimates it by 13% on averages. The
percentages are estimated as

[(
S − O

)
∕O

]
x 100 being S

and O the simulated and observed mean values of the time
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Figure 5. Annual cycle of mean temperature observed and simulated by historical long-term simulations of individual GCMs and the multi-model
ensembles in the 1971–2000 period: (a) and (b) the 25 analysed GCMs; (c) and (d) the 9 GCMs with best evaluation metrics.

series, respectively. A common feature of both ensembles
is that they do not reproduce accurately the positive trend
in annual and summer precipitation, but weakly recog-
nize the positive pattern of change. The seven individual
models do present a trend, but it is smaller than that in
the observations. As mention above, most of the historical
simulations of the CMIP5 models can recognize the right
sign of the summer precipitation changes in southeastern
South America, although weaker than observed (Vera
and Díaz, 2015). Our results suggest that the annual and
summer mean trend in precipitation are weakly simulated
also in the northeast region of Argentina.

Scatterplots of simulated precipitation versus the
observed precipitation are presented in Figure 8. The
scatterplot of the multi-model ensembles (Figures 8(a)
and (b)) reflect the difficulties that some models have in
representing observed precipitation. As in temperature,
the ensembles reduce the temporal variability flattening
the dispersion of the data around the simulated monthly

mean values. Thus, the scatterplot of the 25-model ensem-
ble (Figure 8(a)) shows two quasi-horizontal bands and
a severe dry bias for months with more than 100 mm of
rain. Also, low precipitation monthly values (lesser than
20 mm of rain) are not simulated by the multi-model
ensemble. These biases are reduced when considering
the 7-model ensemble mean (Figure 8(b)) with a closer
fit to the 1 : 1 reference line, mainly on rainy months. In
general, the individual models in the 7-model ensemble
underestimate the mean precipitation in rainy months and
overestimate it in months with low rainfall, a feature also
reproduced in most of the 25 studied models (not shown).
This behaviour can be seen in Figures 8(c) and (d) with
the scatterplots of two of the best performing models,
CCSM4 and CanESM2. As the linear regression lines
show, the two models underestimate precipitation higher
than 150 mm and overestimate precipitation lower than
50 mm. The data dispersion is lower for low precipita-
tion values and increases for high precipitation values,
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Figure 6. Spatial distribution of the annual mean temperature (in ∘C) observed and simulated by historical long-term simulations in the period
1971–2000 for (a) CRU TS 3.20, (b) 9-model ensemble mean, (c) CCSM4 and (d) CESM1-BGC.

Table 3. Statistical evaluation metrics between the mean fields
of annual mean temperature observed and simulated by his-
torical long-term simulations (analysed in the normal period

1971–2000).

Model MBE RMSE Spatial correlation

ACCESS 1.0 0.72 1.51 0.78
CCSM4 0.23 0.65 0.96
CESM1-BGC 0.42 0.79 0.96
CESM1-FASTCHEM 0.13 0.64 0.96
CMCC-CM −0.05 0.65 0.95
EC-EARTH 0.24 0.70 0.96
HadGEM2-CC −0.37 1.60 0.64
MIROC-ESM-CHEM 0.68 1.81 0.62
NorESM1-M −0.09 0.86 0.92
Ensemble mean 0.21 0.72 0.93

resulting in determination coefficients between 0.36 and
0.39. These results suggest that while individual GCMs are
able to recognize the temporal variability of the observed
series, they present difficulties in simulating both the rainy
months and those months of low precipitation.

Figure 9 summarizes the performance of the models in a
Taylor diagram. The 25-model ensemble mean (point 1)
improves the CRMS and the correlation values of each
GCM but underestimates the standard deviation of the
reference value. The temporal variability is also reduced
as discussed earlier. The 7-model ensemble mean (point
2) notably reduces the difference in the standard devia-
tion while maintaining the performance in correlation and
CRMS. The individual standard deviation values indicate
that six out of seven selected models exceed the observed
variability. The CCSM4 model (point f) fits best the obser-
vations (point a) with a slightly higher standard deviation
and a correlation above 0.6.

The annual cycle of observed precipitation and all model
simulations are plotted in Figure 10. Figure 10(a) presents
the inter-model range of the 25 selected GCMs and
the 25-model ensemble mean. The 25-model ensemble

underestimates observations during much of the year, with
exception of the austral winter. Penalba and Rivera (2016)
found a similar result in the eastern portion of southern
South America, reporting that CMIP5 models reproduce
the shape of the annual cycle of precipitation but under-
estimate monthly totals during all year. A similar find-
ing was reported by Maenza et al. (2017) in the western
Pampas of Argentina. It is also evident in Figure 10(b)
that most individual members underestimate the observed
annual cycle in northeastern Argentina. The dry bias and
the high dispersion are largely reduced by the 7-model
ensemble (see Figures 10(c) and (d)). Figure 10(c) indi-
cates that the 7-model ensemble mean properly reproduces
the mean annual cycle of precipitation in the study region.
The relative precipitation maximum in March, which is
a particular feature of the region, is not simulated by the
7-model ensemble but by some individuals models (see
Figure 10(b)).

3.4. Spatial analysis of precipitation

The observed and 7-model ensemble mean precipita-
tion fields are presented in Figures 11(a) and (b) along
with the two best performing models (CanESM2 and
CCSM4) in Figures 11(c) and (d). Observations show a
W-E gradient and slight increase towards the northeast
(Figure 11(a)). The 7-model ensemble, as well as two of
the best performing GCMs, tend to show an SW–NE gra-
dient, mostly due to a negative bias towards the SW. The
7-model ensemble mean (Figure 11(b)) underestimates
the regional precipitation field and reduces the spatial
variability. The CanESM2 model (Figure 11(c)) achieves
the best individual representation of the observed field as
it reproduces the observed spatial variability, while the
CCSM4 model smooths the gradient with positive bias in
the whole region (Figure 11(d)).

The spatial skill scores of the annual simulated precip-
itation fields for the seven best performing models are
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Table 4. Statistical evaluation metrics between the areal-averaged time series of monthly precipitation observed and simulated by
historical long-term simulations (1901–2005). The shaded rows correspond to the models that achieve the best evaluation metrics,

performing the 7-model ensemble mean.

Model MBE
(mm month−1)

MAE
(mm month−1)

RMSE
(mm month−1)

NSE Correlation
coefficient

1 ACCESS 1.0 3.5 34.4 45.3 −0.03 0.47
2 BCC-CSM1.1 −10.9 32.3 42.3 0.10 0.47
3 BNU-ESM −21.1 35.9 46.5 −0.09 0.44
4 CanESM2 7.5 36.0 47.8 −0.15 0.60
5 CESM1-BGC 14.6 34.8 45.3 −0.03 0.60
6 CESM1-FASTCHEM 14.8 34.0 45.4 −0.04 0.62
7 CNRM-CM5.2 −19.5 32.6 43.5 0.05 0.54
8 CSIRO-Mk3.6.0 −22.3 37.7 48.2 −0.17 0.56
9 GFDL-CM3 −12.2 34.0 44.0 0.03 0.52
10 GFDL-ESM2M −19.8 36.5 47.6 −0.14 0.47
11 GISS-E2-R −29.5 38.3 51.0 −0.31 0.43
12 HadGEM2-CC 11.9 37.4 47.2 −0.12 0.45
13 HadGEM2-ES 9.0 36.0 46.1 −0.07 0.46
14 INM-CM4 −20.6 32.2 42.0 0.11 0.62
15 MIROC5 −27.7 36.6 47.8 −0.15 0.52
16 MIROC-ESM-CHEM −29.4 36.0 47.5 −0.13 0.56
17 MPI-ESM-LR −13.6 35.0 45.9 −0.06 0.37
18 MPI-ESM-MR −15.9 36.9 48.5 −0.18 0.31
19 MRI-CGCM3 −5.3 35.8 46.5 −0.09 0.40
20 NorESM1-M 5.1 33.4 43.6 0.04 0.64
21 CCSM4 14.5 33.9 44.1 0.02 0.62
22 CMCC-CM 8.6 35.7 47.8 −0.15 0.48
23 EC-EARTH −2.7 33.0 42.5 0.09 0.46
24 FGOALS-g2 −23.8 35.7 47.2 −0.13 0.41
25 MIROC4h −22.7 35.3 46.1 0.08 0.62

25-Model ensemble −9.0 24.3 32.5 0.47 0.72
7-Model ensemble −0.4 24.9 32.3 0.48 0.71

Figure 7. Areal-averaged time series of annual and summer precipitation (mm year−1 or mm season−1) observed and simulated by the multi-model
ensembles of the historical long-term simulations.
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Figure 8. Scatterplots of simulated versus observed areal-averaged monthly precipitation (period 1901–2005) of the multi-model ensembles (a, b)
and models with the best evaluation metrics (CCSM4 in c, CanESM2 in d). The linear regression line is plotted and its slope m is presented together

with the determination coefficient R2 in the bottom-right corner of each scatterplot.

Figure 9. Taylor diagram of the regional precipitation simulated by historical long-term simulations (period 1901–2005). The blue dots correspond
to the models that achieve the best evaluation metrics and perform the 7-model ensemble. CRMS: centred root mean square error.

presented in Table 5. Most of the GCMs present correla-
tions in the range 0.6–0.7. The exception is the MIROC4h
that exhibits the best correlation (r = 0.8) probably due to
its high resolution (0.56∘ × 0.56∘) despite underestimat-
ing the annual precipitation by about 30%. The 7-model
ensemble reduces the statistical errors of each individ-
ual GCM but it does not improve their spatial correla-
tions. The CanESM2 model exhibits high correlation and
an MBE of about −50 mm year−1, which represents a 5%

of the areal mean precipitation. This result is consistent
with its ability to simulate the annual mean field of pre-
cipitation discussed above. The CCSM4 model overes-
timates the areal-averaged mean precipitation in about
150 mm year−1, which represents the 15% of the observed
field. These results suggest that the multi-model ensem-
ble does not improve the ability of individual models to
simulate spatial precipitation fields. The best-performance
individual models can recognize spatial features that do not
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Figure 10. Annual cycle of the regional precipitation observed and simulated by historical long-term simulations of individual GCMs and the
multi-model ensembles in the period 1971–2000: (a) and (b) the 25 analysed GCMs; (c) and (d) the 7 GCMs with best evaluation metrics.

simulate the multi-model ensemble, mainly the high spa-
tial variability of the precipitation field.

4. Decadal simulations

Table 6 presents the GCMs with decadal simulations
assessed in this study, including their evaluation metrics.
The evaluation focuses on those GCMs that show greater
ability to simulate the regional climate in the historical
long-term experiment. Only five of the subset of best
models present decadal simulations (indicated with ‘a’ in
Table 1). Table 6 shows that the evaluation metrics of the
decadal simulations do not show great differences from
those found in the evaluation of long-term simulations
(Tables 2 and 4).

In the case of the precipitation, the NSE shows a slight
improvement with mostly positive values between 0.1
and 0.25; although the statistical errors and the corre-
lations remain in the range of the historical long-term

simulations. Other studies have shown that the decadal
simulations have been an advance in the modelling and
predictability of the large-scale SST patterns that force
the region’s climate (e.g. Gonzalez and Goddard, 2016;
Meehl et al., 2016). While it is well known that the
study region is strongly forced by large-scale SST pat-
terns (Seager et al., 2010; Barreiro et al., 2014), our
results suggest that the performance of decadal sim-
ulations is similar to that of the historical long-term
simulations.

In the case of temperature, the evaluation metrics present
values very similar to those of the historical long-term
simulations as in precipitation. However, noted that the
maximum errors of decadal simulations (MAE= 2.99 ∘C
and RMSE= 3.43 ∘C; Table 6) are lower than the max-
imum errors of the historical long-term simulations
(MAE= 4.08 ∘C and RMSE= 4.67 ∘C; Table 2). Thus,
the magnitude of the errors is slightly reduced in decadal
simulations.
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Figure 11. Spatial distribution of the annual precipitation (in mm) observed and simulated by historical long-term simulations in the period
1971–2000 for (a) CRU TS 3.20, (b) 7-model ensemble mean, (c) CanESM2 and (d) CCSM4.

Table 5. Statistical evaluation metrics between the mean fields
of annual precipitation observed and simulated by histor-
ical long-term simulations (analysed in the normal period

1971–2000).

Model MBE RMSE Spatial correlation

CanESM2 −49.5 178.8 0.70
CCSM4 152.0 211.3 0.60
CESM1-BGC 134.3 190.8 0.66
CESM1-FASTCHEM 160.0 221.2 0.58
INM-CM4 −277.6 311.5 0.68
MIROC4h −302.8 325.2 0.80
NorESM1-M −11.6 200.7 0.24
Ensemble −27.9 137.8 0.67

As in the historical long-term simulations, the
multi-model ensemble improves the evaluation met-
rics of precipitation and temperature, over those of the
individual GCMs (see Table 6). According to the Table 6,
the CCSM4 model again shows the greater ability to
simulate the regional mean temperature and precipitation.
The CFSv2-2011 and the CMCC-CM models also exhibit
good performance for temperature, while the CanCM4
model is among the best for precipitation.

The Taylor diagram of mean temperature (Figure 12(a))
is similar to that obtained for the long-term simulations
(Figure 4): all GCMs simulate temperature with standard
deviations greater than the reference value, correlation
coefficients in the range 0.92–0.95 and CRMS close to
2 ∘C. The multi-model ensemble (point I) approaches the
reference point as it improves both the correlation and
CRMS values. Different standard deviations are found
in the Taylor diagram of the precipitation (Figure 12(b));
certain models considerably underestimate the reference
value of 49 mm (point A) while others overestimate it.
The models with the highest standard deviation, also
exhibit the highest correlation coefficients (points B and
C, r ∼ 0.65). The multi-model ensemble (point I) improves
the correlation and the CRMS of each GCM, although

Table 6. Statistical evaluation metrics between the
areal-averaged time series of monthly mean temperature
and precipitation observed and simulated by decadal simulations

(1961–2010).

Model MBE MAE RMSE NSE Correlation
coefficient

Temperature

CanCM4 −1.69 2.22 2.88 0.63 0.94
CCSM4 0.76 1.53 1.90 0.84 0.94
CFSv2-2011 0.17 1.48 1.87 0.85 0.93
CMCC-CM 0.17 1.48 1.87 0.85 0.92
EC-EARTH 0.23 1.54 1.99 0.83 0.92
FGOALS-g2 −2.61 2.73 3.19 0.55 0.93
MIROC4h 2.73 2.99 3.43 0.48 0.95

Ensemble mean −0.13 1.13 1.46 0.91 0.96
Precipitation
CanCM4 4.23 34.52 44.97 0.16 0.65
CCSM4 11.32 33.10 43.48 0.22 0.66
CFSv2-2011 −3.44 34.23 45.46 0.11 0.48
CMCC-CM 6.97 37.16 48.25 0.03 0.54
EC-EARTH −8.53 34.28 45.29 0.15 0.48
FGOALS-g2 −29.55 38.95 51.74 −0.11 0.51
MIROC4h −19.42 34.49 44.94 0.16 0.63
Ensemble mean −5.52 25.57 33.80 0.53 0.74

The units of the mean bias error (MBE), mean absolute error (MAE)
and root mean square error (RMSE) are ∘C month−1 for temperature and
mm month−1 for precipitation. The Nash–Sutcliffe efficiency (NSE) is
dimensionless.

it widely underestimates the standard deviation of the
reference value.

The mean annual cycle of temperature and precipitation
from observations and simulations are shown in Figure 13.
Figure 13(a) shows that temperature of the multi-model
ensemble fits very well the observed annual cycle and is
consistent with a low MBE of only −0.1 ∘C (see Table 6).
Most of the GCMs (Figure 13(b)) reproduce the annual
cycle but with systematic errors that are quantified by
the MBE values in Table 6. Five out of the seven anal-
ysed models present positive MBEs less than 1 ∘C. Only
two models have negative errors, but greater than 1.6 ∘C
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Figure 12. Taylor diagrams for (a) temperature and (b) precipitation simulated by decadal simulations (1961–2010). CRMS: centred root mean
square error.

in magnitude. The multi-model ensemble precipitation
(Figure 13(c)) underestimates observed precipitation dur-
ing the rainy season (between September and April) while
slightly overestimates the precipitation of the dry sea-
son. The annual cycle of precipitation is simulated by
each GCM with dissimilar success; while some GCMs
adequately reproduce the annual cycle (e.g. CCSM4 and
CanCM4) others are far removed from the observed distri-
bution (e.g. FGOALS-g2, CMCC-CM).

5. Conclusions

This paper evaluated the ability of CMIP5 GCMs to simu-
late the observed spatio-temporal behaviour of the climate
in northeastern Argentina. The GCMs were selected from
the two main core sets of CMIP5 simulations: long-term
(1901–2005) and decadal (1961–2010). Monthly simula-
tions of precipitation and temperature were evaluated with
the observed CRU TS 3.20 data set. The simulations of
each GCM and the multi-model ensembles were evaluated
through the MBE, the MAE, the RMSE, the coefficient
of NSE, and the Pearson correlation. These metrics were
computed for both areal-averaged time series and spatial
fields. We also determined the ability of GCMs to sim-
ulate the annual mean fields and the mean annual cycle
of temperature and precipitation for the normal 30-year
period 1971–2000. Inspection of the results allowed selec-
tion and evaluation of model subsets that represent better
the regional climate.

The temperature observations show that the region: (1)
experienced a warming trend in annual mean tempera-
ture, with a strong signal of positive change during austral
spring; (2) presents a marked annual cycle of temperature
with mean values of 25 ∘C in summer and 12 ∘C in win-
ter; and (3) has a spatial south–north gradient that ranges
from 15 to 21 ∘C. These three features are correctly sim-
ulated by all GCMs that performed historical long-term
simulations. All models reach correlations in the range
0.92–0.94 for the 1901–2005 time series. Among them,

the CCSM4 and CESM1-BGC models have the highest
ability to simulate regional temperature as they achieve the
best evaluation metrics and reproduce properly the features
of the climatology. Furthermore, the ensemble of the nine
most skilful models improves the performance of the indi-
vidual GCMs. The 9-model ensemble reaches a correlation
of 0.96, reduces more than 20% the positive systematic
errors shown by the all-model ensemble in the 1901–2005
time series, and fits well the climatological annual cycle.

The precipitation observations show that the region: (1)
experienced a positive trend in annual and summer pre-
cipitation after the 1960s (Barros et al., 2008; Lovino
et al., 2014); (2) has a marked intra-annual variability, with
the warm season (October to April) accounting for more
than 80% of the annual precipitation; and (3) presents a
spatial west–east gradient. The set of CMIP5 historical
long-term simulations reproduce the regional precipitation
features with diverse degrees of success. The ensemble
performed with the seven more skilful (in terms of pre-
cipitation) models reveals better skill than the individual
GCMs, reducing all-model biases in more than 25%. On
the other hand, the 7-model ensemble accurately repro-
duces the annual precipitation cycle improving the perfor-
mance of all the rest of the GCMs that underestimate rain-
fall in the rainy season. However, the 7-model ensemble
does not clearly identify the positive trend in annual and
summer precipitation. Spatially, the best individual mod-
els and the 7-model ensemble mean correctly reproduce
the large scale features of the observed annual precipita-
tion pattern but fail to replicate the smaller scales spatial
variability.

The seven models with better precipitation skill had
already been identified as those that best resemble the
South American monsoon with the most accurate quanti-
tative estimations of the summer rainfall in the monsoon
area (Hsu et al., 2013). Furthermore, Jones and Carvalho
(2013) showed that most of the selected GCMs ably repro-
duce the large-scale features like seasonal amplitude, onset
or duration of the South America Monsoon System. Thus,
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Figure 13. Annual cycle of temperature (a, b) and precipitation (c, d) observed and simulated by decadal simulations of individual GCMs and their
multi-model ensembles in the period 1971–2000.

the ability of the selected GCMs to reproduce the mon-
soon features may explain their high performance to sim-
ulate the precipitation in northeastern Argentina. Four of
these seven selected models for precipitation also achieve
the best evaluation metrics for temperature: CCSM4,
CESM1-BGC, CESM1-FASTCHEM, and NorESM1-M.

It is widely known that the decadal variability, strongly
forced by large-scale SST patterns, plays a key role in mod-
ulating the climate of northeastern Argentina (e.g. Barreiro
et al., 2014 and references therein). Therefore, it would
be expected that the inclusion of this external forcing in
the decadal simulations would lead to improvements in
skill. Nevertheless, our results suggest that decadal simu-
lations do not improve the evaluation metrics achieved by
the long-term simulations, suggesting that the initializa-
tion of decadal simulations with climate observations does
not lead necessarily to a better representation of regional
climate. Still, some individual models do have success.
The CCSM4 model achieves the best evaluation metrics
for both temperature and precipitation, demonstrating the
greater ability to simulate the regional climate on decadal

time scales. This model also presents one of the best per-
formances in the evaluation of long-term simulations.

Reliable projections of future climate require models that
adequately represent the characteristics of the regional cli-
mate system. The evaluation of the long-term simulations
allowed us to select a subset of 9 GCMs that best reproduce
the mean temperature fields and a subset of 7 GCMs
that most skilfully represents regional precipitation. The
multi-model ensemble means computed using the selected
GCMs achieve the largest skill to represent historical and
present climate as they reached the best evaluation met-
rics, exceeding the performance of each GCM and the
multi-model ensemble performed with all the GCMs. It
is expected that these models with a greater capacity of
representing the regional historical climate, will be more
appropriate for simulating the future climate.
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